Validationexamen
EnseignantBoban Velikovic
Horaires hebdomadaires 4 h CM
Années Master Logique et Fondements de l'Informatique

Syllabus

Le 8 août 1900, lors du second Congrès International des mathématiciens, à Paris, David Hilbert énonça une liste de 23 problèmes mathématiques qui, selon lui, devaient servir de guide pour les recherches à venir dans le nouveau siècle. Le premier problème de cette liste, l’hypothèse du continu de Cantor, a été résolu, en deux temps : par Gödel (1938) qui construisit un modèle interne de l'hypothèse généralisée du continu, et par Paul Cohen (1963), qui a inventé une construction de modèle pour la négation de l’hypothèse de Cantor. Ce cours couvrira principalement les deux constructions de modèles de la théorie des ensembles introduites par Gödel et Cohen.

Sommaire

  • Rappel sur les bases de la théorie des ensembles : cardinaux, ordinaux, ordres, algèbres de Boole, etc.
  • Arbres et théorie de Ramsey.
  • Modèles de ZFC, réflexion, relativisations, ensembles définissables en terme d’ordinaux.
  • L’univers constructible L de Gödel, la cohérence de l’Axiome duChoix et l’Hypothèse du Continu.
  • Notion de forcing et extensions génériques, théorème fondamental du forcing.
  • Applications du forcing : le principe ‘diamant’, arbres de Souslin, Kurepa, etc.
  • Itération de forcing, l’axiome de Martin et applications.

Bibliographie

  • T. JECH : Set Theory (Springer Verlag, 2002)
  • P. DEHORNOY, La théorie des ensembles (Calvage et Mounet 2017)
  • K. KUNEN : Set Theory (Studies in Logic : Mathematical Logic and Foundations, Vol. 34, College Publications, London, 2011)
  • N. WEAVER, Forcing for mathematicians (World Scientific 2014)