Admission

Prérequis : M1 mathématiques

Dossier : L'ouverture des inscriptions aura lieu le 1er avril

Débouchés

Doctorat, recherche.

Organisation

Deux périodes de cours et rédaction d'un mémoire.

Organisation

Le cursus comprend une partie d'apprentissage théorique composée d'un choix de trois UE de cours parmi la liste proposée, une UE d’ouverture et un mémoire de recherche.

Au cours de l'année, on distingue les cours fondamentaux (ou de base) du premier semestre et les cours d'orientation (ou de spécialité) du second. Les étudiants doivent valider trois cours, dont au moins un cours d'orientation.

L'UE d'orientation peut aussi être prise parmi les cours de M2 extérieurs (Paris 6, Paris 11, Paris 13...), sous réserve de l’accord préalable du responsable du M2, et à condition de correspondre au même volume horaire.

La partie pratique se compose d'une UE de stage (30ects), correspondant à la rédaction d'un mémoire, et d'une UE d'ouverture (3ects) correspondant à des activités complémentaires choisies en accord avec le responsable du M2.

Le mémoire, dirigé par un enseignant-chercheur, introduit les étudiants à des sujets de recherche actuels.

Parmi les possibilités pour l'UE d'ouverture : exposé oral et/ou écrit dans le cadre d’un groupe de travail, rapport écrit et/ou oral sur un cours ou séminaire « extérieur », etc…

Validation

Pour obtenir le diplôme de Master, l’étudiant doit être reçu à chacune des cinq épreuves composant son diplôme, soit :

  • 1 UE fondamentale 9 ECTS
  • 1 UE d’orientation 9 ECTS
  • 1 UE fondamentale ou d’orientation 9 ECTS
  • Stage 30 ECTS
  • UE d’ouverture 3 ECTS

Chaque cours de la partie théorique est sanctionné par des épreuves écrites, de 3 heures, accompagnées, le cas échéant, si la note d’écrit, sur 20, est ≥ 8, et < 10, d’un oral de rattrapage. Pour chaque cours, la note finale est donnée sur 20.

Seules sont prises en compte dans cette évaluation les UE pour lesquelles la note obtenue est ≥ 10.

Les dates et les horaires des examens sont disponibles sur le site du M2, un mois auparavant. Il n’y a pas de convocation individuelle.

Le stage (en général d’une durée de 3 mois) donne lieu :

  • à la rédaction d’un mémoire
  • à une soutenance orale devant un collège comprenant au moins 2 membres habilités à diriger des recherches.

Il fait l’objet d’un rapport du directeur de stage et est sanctionné par une note sur 20.

La soutenance doit :

  • Se dérouler avant le 30 juin pour une prise en compte de la note en session 1 ;
  • Se dérouler avant le 30 septembre pour une prise en compte de la note en session 2.

Le M2 est délivré avec pour note globale la « moyenne pondérée » des notes obtenues dans chacune des catégories d’UE ci-dessus. Dans chaque catégorie, seules sont conservées pour le calcul, des notes correspondant au nombre d’ECTS requis. La note globale est sur 20.

Cours proposés

Cours fondamentaux 1

La théorie du corps de classes 1

9 ECTS, semestre 1

PrérequisFamilarité avec l'algèbre commutative de base (anneaux, idéaux, modules, corps, localisation, quotients, anneaux de Dedekind). Quelques notions de théorie de Galois sont les bienvenues. On utilisera des notions élémentaires d'analyse complexe et d'analyse de Fourier.
Validationexamen
EnseignantPierre-Henri Chaudouard
Horaires hebdomadaires 4 h CM , 2 h TD

Syllabus

Le but du cours est d’énoncer les principaux résultats de la « théorie du corps de classes » et d’en donner une démonstration aussi complète que possible dans le temps imparti. Le but de cette théorie est d’obtenir une description des extensions abéliennes d’un corps local ou global en terme de l’arithmétique de ce corps. Le contenu du cours sera utile à tout étudiant intéressé par la théorie des nombres, la géométrie arithmétique ou les formes automorphes.

Le but du cours I est d’introduire les principaux objets qui vont intervenir dans l’énoncé et de démontrer au passage quelques théorèmes classiques de théorie algébrique des nombres. Il a donc un intérêt indépendamment du cours II.

Représentations des groupes finis, algèbres semi-simples, invariants tensoriels

9 ECTS, semestre 1

PrérequisAlgèbre M1
Validationexamen
EnseignantMarc Rosso
Horaires hebdomadaires 2 h CM

Syllabus

L’objectif de ce cours est de donner une introduction à la théorie des représentations des algèbres semi-simples, en particulier des algèbres de groupes finis, et d’étudier plus précisément celles des groupes symétriques en interaction avec le groupe linéaire.

Parcours algèbres d’opérateurs, théorie géométrique et mesurée des groupes

9 ECTS, semestre 1

PrérequisAlgèbre et analyse M1
Validationexamen
EnseignantGeorges Skandalis
Horaires hebdomadaires 4 h CM

Syllabus

Ce cours est le premier volet d'un parcours explorant les liens profond existant entre les algèbres d’opérateurs, la théorie géométrique et la théorie mesurée des groupes discrets dénombrables. Les algèbres d’opérateurs, introduites par Murray et von Neumann entre 1940 et 1950 dans l’optique de formaliser les concepts de la mécanique quantique, ont connu des progrès spectaculaires, en lien avec la théorie ergodique et la théorie des groupes, ces 15 dernières années. Ce parcours présentera quelques uns de ces résultats très récents ainsi que les techniques modernes qui permettent de les obtenir.

Le premier cours de ce parcours est une introduction aux algèbres d’opérateurs : C*-algèbres et algèbres de von Neumann.

Cours fondamentaux 2

La théorie du corps de classes 2

9 ECTS, semestre 1

PrérequisCours I
Validationexamen
EnseignantPierre-Henri Chaudouard
Horaires hebdomadaires 4 h CM , 2 h TD

Syllabus

Le but du cours est d’énoncer les principaux résultats de la « théorie du corps de classes » et d’en donner une démonstration aussi complète que possible dans le temps imparti. Le but de cette théorie est d’obtenir une description des extensions abéliennes d’un corps local ou global en terme de l’arithmétique de ce corps. Le contenu du cours sera utile à tout étudiant intéressé par la théorie des nombres, la géométrie arithmétique ou les formes automorphes.

Une introduction à la théorie analytique des nombres

9 ECTS, semestre 1

Prérequisanalyse complexe
Validationexamen
EnseignantRégis de La Bretèche
Horaires hebdomadaires 4 h CM

Syllabus

Ce cours consiste en une initiation courte à la théorie analytique des nombres. Ce domaine se situe à l'interface avec beaucoup d'autres domaines des mathématiques : formes modulaires, géométrie algébrique, combinatoire ... Il s'agit de donner quelques repères (on démontrera le théorème des nombres premiers) et on évoquera quelques développements très récents sur les fonctions sommatoires de fonctions multiplicatives.

Introduction à la géométrie sous-riemannienne

9 ECTS, semestre 1

PrérequisConnaissances de base de géométrie différentielle. Il n’est pas strictement nécessaire d’avoir suivi un cours de géométrie riemannienne.
Validationexamen
EnseignantDavide Barilari
Horaires hebdomadaires 4 h CM

Syllabus

On propose une introduction à la géométrie sous-riemannienne, notamment autour des questions de l'existence, caractérisation et régularité des géodésiques sous-riemanniennes. On introduira notamment le formalisme hamiltonien, qui est le langage naturel pour traiter ce genre de problèmes.

Parcours algèbres d’opérateurs, théorie géométrique et mesurée des groupes

9 ECTS, semestre 1

PrérequisCours algèbres d'opérateurs I
Validationexamen
EnseignantPierre FIma
Horaires hebdomadaires 4 h CM

Syllabus

Ce cours est le second volet d'un parcours explorant les liens profond existant entre les algèbres d’opérateurs, la théorie géométrique et la théorie mesurée des groupes discrets dénombrables. Les algèbres d’opérateurs, introduites par Murray et von Neumann entre 1940 et 1950 dans l’optique de formaliser les concepts de la mécanique quantique, ont connu des progrès spectaculaires, en lien avec la théorie ergodique et la théorie des groupes, ces 15 dernières années. Ce parcours présentera quelques uns de ces résultats très récents ainsi que les techniques modernes qui permettent de les obtenir.

Dans ce second cours, différentes propriétés d’approximations pour les groupes et algèbres de von Neumann, dont l’utilisation permet d’obtenir des résultats surprenant de rigidité, seront présentées et étudiées en détails.

Cours spécialisés 1

Catégorification(s) en théorie de Lie

9 ECTS, semestre 2

PrérequisIl serait souhaitable d'avoir au préalable suivi un cours sur les algèbres de Lie ou les groupes algébriques.
Validationexamen
EnseignantOlivier Dudas
Horaires hebdomadaires 2 h CM

Syllabus

Le but de ce cours est d'introduire à la théorie des représentations dite "supérieure", où les espaces vectoriels sont remplacés par des catégories et les actions par des foncteurs. Cette approche permet de démontrer, entre autres : des propriétés de positivité et des identités combinatoires (en "décatégorifiant"), des équivalences entre catégories abéliennes ou triangulées,l'existence de bases "canoniques" pour certaines représentations.

Ce cours s'insère dans la filière "Algèbre, groupes et représentations" mais certaines constructions topologiques (faisceaux constructibles et faisceaux pervers) seront aussi évoquées.

Introduction à l’analyse géométrique à travers les mathématiques de la relativité générale

9 ECTS, semestre 2

PrérequisGéométrie différentielle et Riemannienne.
Validationexamen
EnseignantPaul Laurain
Horaires hebdomadaires 4 h CM

Syllabus

On propose une introduction à la géométrie sous-riemannienne, notamment autour des questions de l'existence, caractérisation et régularité des géodésiques sous-riemanniennes. On introduira notamment le formalisme hamiltonien, qui est le langage naturel pour traiter ce genre de problèmes.

Prérequis:

Géométrie différentielle et Riemannienne (le cours de J. Marché à P6 ou [2] chapitres1-6, ou encore [1]) Équations aux dérivées partielles principalement elliptiques (Le cours de Yves Achdou & Xavier Blanc à P7 ou [3] chapitres 5-6)

Courbe adélique et géométrie d’Arakelov birationnelle 1

9 ECTS, semestre 2

PrérequisCours fondamentaux sur la géométrie algébrique et théorie des nombres.
Validationexamen
EnseignantHuayi Chen
Horaires hebdomadaires 4 h CM

Syllabus

Le but de ce cours est de présenter des avancements récents sur la géométrie d’Arakelov birationnelle. La géométrie d’Arakelov est une théorie de géométrie arithmétique, où plusieurs domaines mathématiques, comme géométrie algébrique, théorie des nombres, géométrie analytique interviennent naturellement. Elle consiste à «compactifier» les variétés sur un corps de nombres par des objets analytiques, en s’appuyant sur la comparaison avec la géométrie algébrique relativement à une courbe projective régulière.

Le cours commence par une introduction sur la géométrie des nombres classique et sa version moderne dans le langage de fibré vectoriel hermitien. Ensuite on introduit une géométrie de courbe adélique dont le corps «de nombres» sous-jacent est de type fini sur Q.

Méthode de Nash-Moser et EDP non-linéaires

9 ECTS, semestre 2

Prérequisanalyse classiques de L3/M1 (calcul différentiel, analyse de Fourier, espaces de Banach)
Validationexamen
EnseignantDavid Gérard-Varet
Horaires hebdomadaires 4 h CM

Syllabus

L'objet du cours est une méthode remarquable introduite par Nash et développée par Moser, visant à résoudre des EDO ou des EDP non-linéaires. Cette méthode a été appliquée avec succès à différents problèmes d'analyse et de géométrie : plongement isométrique des variétés, conjugaison des difféomorphismes du cercle, théorème KAM, amortissement Landau...

Cours spécialisés 2

Les surfaces K3

9 ECTS, semestre 2

PrérequisUne certaine familiarité avec les concepts de base de la géométrie algébrique ou complexe.
Validationexamen
EnseignantOlivier Debarre
Horaires hebdomadaires 2 h CM

Syllabus

La géométrie algébrique est l'étude des ensembles définis des équations polynomiales à plusieurs variables à coefficients dans un corps, appelés variétés affines. On considère aussi les sous-ensembles des espaces projectifs définis par des équations polynomiales homogènes, de façon à obtenir des objets « compacts », les variétés projectives. Dès qu'on a défini les concepts de dimension et de lissité, on peut entamer un travail de classification (à isomorphisme près) des variétés projectives lisses connexes de dimension donnée, sur un corps fixé qui sera pour nous le corps des complexes. En dimension 1, on appelle ces variétés des courbes et un élément essentiel de leur classification est leur genre, un entier positif. Dès la dimension 2, la classification demande plus de travail mais est maintenant bien comprise depuis des décennies.

Les surfaces K3 seront le fil conducteur du cours mais j'en profiterai pour introduire divers outils classiques utilisés dans l'étude des surfaces algébriques.

Parcours algèbres d’opérateurs, théorie géométrique et mesurée des groupes

9 ECTS, semestre 1

Prérequiscours algèbres d'opérateurs I et II
Validationexamen
EnseignantFrançois Le Maître
Horaires hebdomadaires 4 h CM

Syllabus

Ce cours est le troisième volet d'un parcours explorant les liens profond existant entre les algèbres d’opérateurs, la théorie géométrique et la théorie mesurée des groupes discrets dénombrables. Les algèbres d’opérateurs, introduites par Murray et von Neumann entre 1940 et 1950 dans l’optique de formaliser les concepts de la mécanique quantique, ont connu des progrès spectaculaires, en lien avec la théorie ergodique et la théorie des groupes, ces 15 dernières années. Ce parcours présentera quelques uns de ces résultats très récents ainsi que les techniques modernes qui permettent de les obtenir.

Ce troisième cours portera sur les sous algèbres abéliennes maximales d’une algèbre de von Neumann finie. On étudiera en détail le lien entre ces dernières et les actions préservant une mesure de probabilité de groupes dénombrables. Plusieurs résultats profonds, tels que l’unicité de la Cartan dans le facteur hyperfini II1 (Connes-Feldman-Weiss, 1981) et la trivialité du groupe fondamental de L(SL2(Z)nZ2) (Popa, 2001), seront démontrés.

Courbe adélique et géométrie d’Arakelov birationnelle 2

9 ECTS, semestre 2

PrérequisCours fondamentaux sur la géométrie algébrique et théorie des nombres.
Validationexamen
EnseignantHuayi Chen
Horaires hebdomadaires 4 h CM

Syllabus

Le but de ce cours est de présenter des avancements récents sur la géométrie d’Arakelov birationnelle. La géométrie d’Arakelov est une théorie de géométrie arithmétique, où plusieurs domaines mathématiques, comme géométrie algébrique, théorie des nombres, géométrie analytique interviennent naturellement. Elle consiste à «compactifier» les variétés sur un corps de nombres par des objets analytiques, en s’appuyant sur la comparaison avec la géométrie algébrique relativement à une courbe projective régulière.

La dernière partie du cours porte sur un travail récent en collaboration avec Moriwaki sur l’étude des schémas projectifs au-dessus d’une courbe adélique générale et leurs invariants arithmétiques.

Admission

Candidature des étudiants étrangers

Afin de faciliter la mobilité internationale, l’Université Paris Diderot adhère à l’Agence Campus France. Les étudiants étrangers relevant de la procédure CEF (consultation de la liste des pays concernés : http://www.campusfrance.org/fr/node/1246), doivent prendre connaissance de la procédure de candidature sur le site de Campus France : http://www.campusfrance.org/fr et doivent s’inscrire auprès de cet organisme avant mars 2019.

Pour toutes les autres candidatures

les étudiants doivent déposer une demande de pré-inscription sur le site de l'université.

L'ouverture des inscriptions aura lieu le 1er avril

Débouchés

Cette formation oriente vers les métiers de la recherche et de l'enseignement supérieur, au sein des organismes publics (CNRS, Inria), des universités ou de grands groupes.

A la suite du master, un certain nombre d'étudiants poursuivent leur formation par un cycle de trois ans de doctorat.

Porte d'entrée pour les métiers de la recherche académique, le doctorat est également valorisé dans l'industrie, en particulier à l'étranger.