ValidationCC+examen
EnseignantBrice Halimi
Horaires hebdomadaires 2 h CM
Années Master Logique et Fondements de l'Informatique

Syllabus

En quoi la logique est-elle formelle ?

Le cours sera consacré à cette question. Il examinera en particulier trois grandes raisons de déclarer « formelle » la logique : parce qu’elle recourt à des ressources discursives qu’on peut dire formelles (schématiques) ; parce qu’elle porte sur des formes (dont le statut est à préciser : « constantes logiques » pour Russell, « formes dérivées du quelque chose en général » pour Husserl, pour prendre deux exemples importants) ; parce qu’elle vise à une validité indépendante de tout contenu particulier (logique comme science universelle).

Ces trois grandes raisons ne sont pas nécessairement compatibles. Par ailleurs, l’examen de la question posée impliquera bien entendu la prise en compte de l’histoire de la logique, et une réflexion sur la situation de la logique entre philosophie et mathématiques. Ce sera l’occasion d’examiner l’enjeu de la « généralité absolue », c’est-à-dire celui de la possibilité d’une théorie portant sur absolument toutes choses en général.

Compétences visées : connaissance des enjeux philosophiques de l’histoire de la logique au XXe siècle.

Sommaire

CONTENU – En quoi la logique est-elle formelle ? Le cours sera consacré à cette question. Il examinera en particulier trois grandes raisons de déclarer « formelle » la logique : parce qu’elle recourt à des ressources discursives qu’on peut dire formelles (schématiques) ; parce qu’elle porte sur des formes (dont le statut est à préciser : « constantes logiques » pour Russell, « formes dérivées du quelque chose en général » pour Husserl, pour prendre deux exemples importants) ; parce qu’elle vise à une validité indépendante de tout contenu particulier (logique comme science universelle). Ces trois grandes raisons ne sont pas nécessairement compatibles. Par ailleurs, l’examen de la question posée impliquera bien entendu la prise en compte de l’histoire de la logique, et une réflexion sur la situation de la logique entre philosophie et mathématiques. Ce sera l’occasion d’examiner l’enjeu de la « généralité absolue », c’est-à-dire celui de la possibilité d’une théorie portant sur absolument toutes choses en général.

Bibliographie

-[1] J. MacFarlane, “Frege, Kant, and the Logic in Logicism”, The Philosophical Review 111, 2002 -[2] A. Rayo & G. Uzquiano (éds), Absolute Generality, Oxford University Press, 2006 -[3] F. Rivenc, L’Universalisme logique, Payot, 1993 -[4] P. de Rouilhan, “Tarski et l’universalité de la logique”, in F. Nef & D. Vernant, D (éds), Le formalisme en question. Le tournant des années 30, Vrin, 1998.